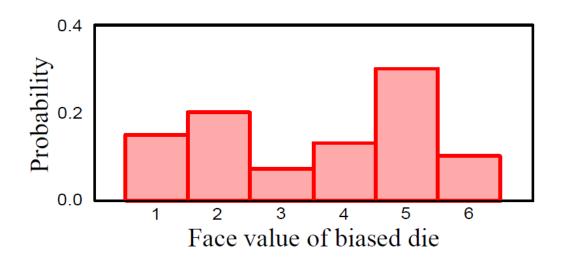
Computer vision: models, learning and inference

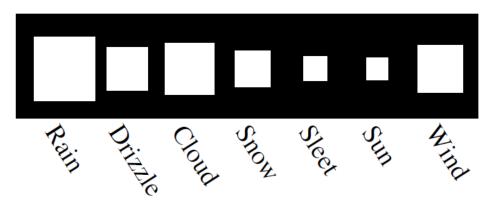
Chapter 2
Introduction to probability

Random variables

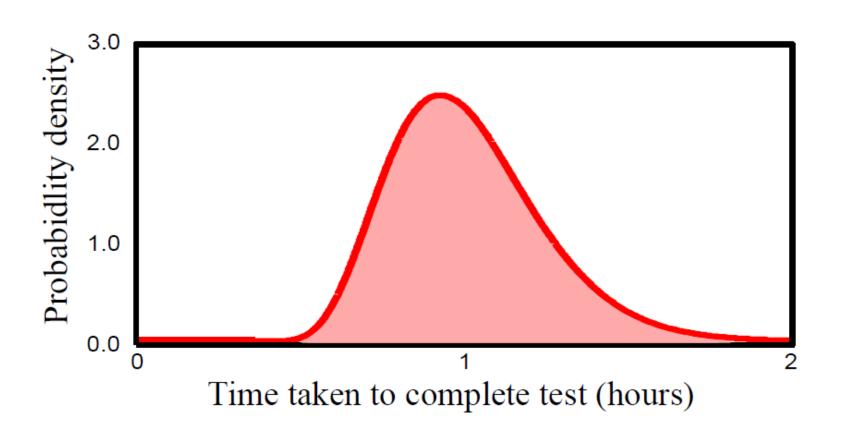
- A random variable x denotes a quantity that is uncertain
- May be result of experiment (flipping a coin) or a real world measurements (measuring temperature)
- If observe several instances of x we get different values
- Some values occur more than others and this information is captured by a probability distribution

Discrete Random Variables





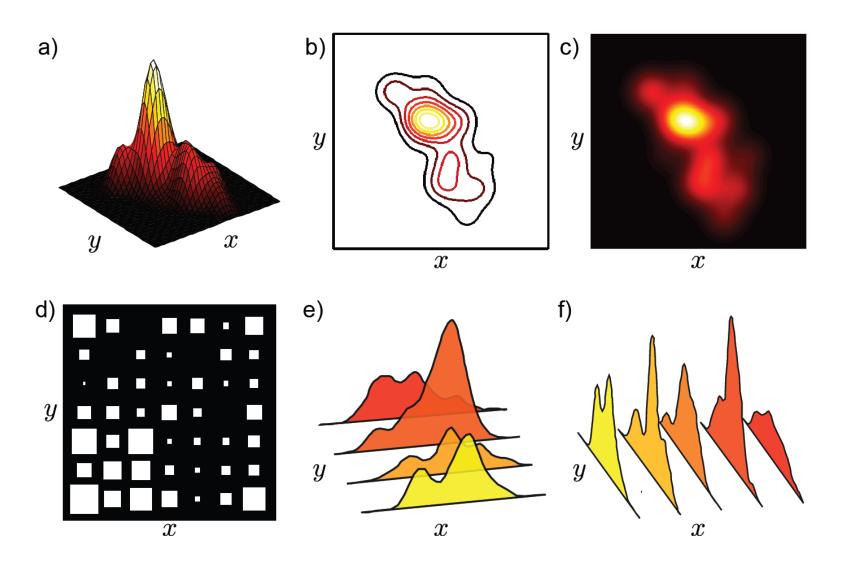
Continuous Random Variable



Joint Probability

- Consider two random variables x and y
- If we observe multiple paired instances, then some combinations of outcomes are more likely than others
- This is captured in the joint probability distribution
- Written as Pr(x,y)
- Can read Pr(x,y) as "probability of x and y"

Joint Probability



We can recover probability distribution of any variable in a joint distribution by integrating (or summing) over the other variables

$$Pr(x) = \int Pr(x, y) dy$$

$$Pr(y) = \int Pr(x, y) dx$$

We can recover probability distribution of any variable in a joint distribution by integrating (or summing) over the other variables

$$Pr(x) = \sum_{y} Pr(x,y)$$

$$Pr(y) = \sum_{x} Pr(x,y)$$

We can recover probability distribution of any variable in a joint distribution by integrating (or summing) over the other variables

$$Pr(x) = \sum_{y} Pr(x,y)$$

$$Pr(y) = \int Pr(x,y) dx$$

We can recover probability distribution of any variable in a joint distribution by integrating (or summing) over the other variables

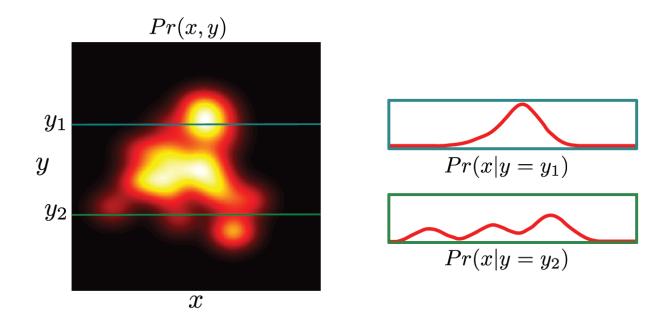
$$Pr(x) = \int Pr(x,y) dy$$

$$Pr(y) = \int Pr(x,y) dx$$

Works in higher dimensions as well – leaves joint distribution between whatever variables are left

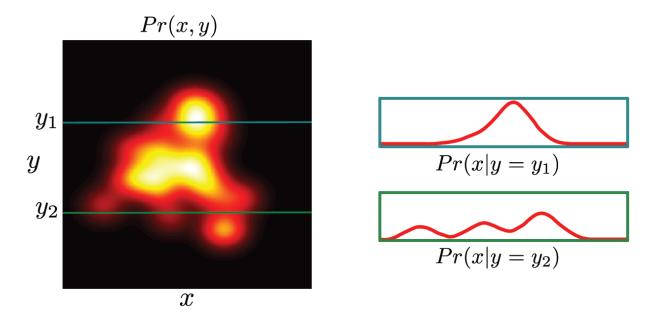
$$Pr(x,y) = \sum_{w} \int Pr(w,x,y,z) dz$$

- Conditional probability of x given that $y=y_1$ is relative propensity of variable x to take different outcomes given that y is fixed to be equal to y_1 .
- Written as $Pr(x | y=y_1)$



- Conditional probability can be extracted from joint probability
- Extract appropriate slice and normalize

$$Pr(x|y=y^*) = \frac{Pr(x,y=y^*)}{\int Pr(x,y=y^*)dx} = \frac{Pr(x,y=y^*)}{Pr(y=y^*)}$$



$$Pr(x|y=y^*) = \frac{Pr(x,y=y^*)}{\int Pr(x,y=y^*)dx} = \frac{Pr(x,y=y^*)}{Pr(y=y^*)}$$

More usually written in compact form

$$Pr(x|y) = \frac{Pr(x,y)}{Pr(y)}$$

Can be re-arranged to give

$$Pr(x,y) = Pr(x|y)Pr(y)$$

$$Pr(x,y) = Pr(y|x)Pr(x)$$

$$Pr(x,y) = Pr(x|y)Pr(y)$$

This idea can be extended to more than two variables

$$Pr(w, x, y, z) = Pr(w, x, y|z)Pr(z)$$

$$= Pr(w, x|y, z)Pr(y|z)Pr(z)$$

$$= Pr(w|x, y, z)Pr(x|y, z)Pr(y|z)Pr(z)$$

Bayes' Rule

From before:

$$Pr(x,y) = Pr(x|y)Pr(y)$$

$$Pr(x,y) = Pr(y|x)Pr(x)$$

Combining:

$$Pr(y|x)Pr(x) = Pr(x|y)Pr(y)$$

Re-arranging:

$$Pr(y|x) = \frac{Pr(x|y)Pr(y)}{Pr(x)}$$

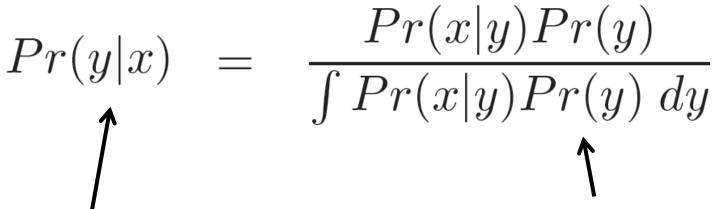
$$= \frac{Pr(x|y)Pr(y)}{\int Pr(x,y) dy}$$

$$= \frac{Pr(x|y)Pr(y)}{\int Pr(x|y)Pr(y) dy}$$

Bayes' Rule Terminology

Likelihood – propensity for observing a certain value of x given a certain value of y

Prior – what we know about y before seeing x



Posterior – what we know about y after seeing x

Evidence –a constant to ensure that the left hand side is a valid distribution

Independence

 If two variables x and y are independent then variable x tells us nothing about variable y (and vice-versa)

$$Pr(x|y) = Pr(x)$$

$$Pr(y|x) = Pr(y)$$

$$Pr(x|y = y_1)$$

$$y_1$$

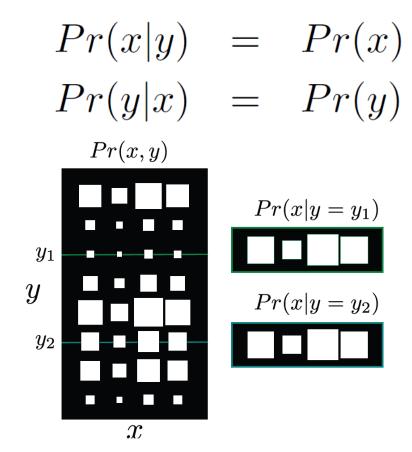
$$y_2$$

$$y_2$$

$$x$$

Independence

 If two variables x and y are independent then variable x tells us nothing about variable y (and vice-versa)

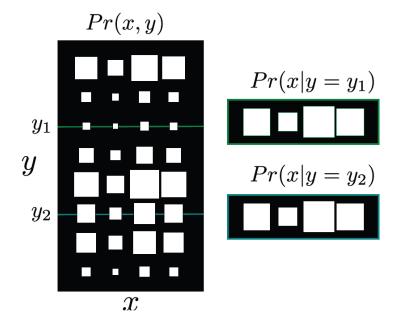


Independence

 When variables are independent, the joint factorizes into a product of the marginals:

$$Pr(x,y) = Pr(x|y)Pr(y)$$

= $Pr(x)Pr(y)$



Expectation

Expectation tell us the expected or average value of some function f[x] taking into account the distribution of x

Definition:

$$E[f[x]] = \sum_{x} f[x]Pr(x)$$

$$E[f[x]] = \int_{x} f[x]Pr(x) dx$$

Expectation

Expectation tell us the expected or average value of some function f[x] taking into account the distribution of x

Definition in two dimensions:

$$E[f[x,y]] = \iint f[x,y]Pr(x,y) dx dy$$

Expectation: Common Cases

$$E[f[x]] = \int f[x]Pr(x) dx$$

Function $f[\bullet]$	Expectation
x	mean, μ_x
x^k	k^{th} moment about zero
$(x-\mu_x)^k$	k^{th} moment about the mean
$(x-\mu_x)^2$	variance
$(x-\mu_x)^3$	skew
$(x-\mu_x)^4$	kurtosis
$(x-\mu_x)(y-\mu_y)$	covariance of x and y

$$E[f[X]] = \int f[x]Pr(X=x)dx$$

Rule 1:

Expected value of a constant is the constant

$$E[\kappa] = \kappa$$

$$E[f[X]] = \int f[x]Pr(X=x)dx$$

Rule 2:

Expected value of constant times function is constant times expected value of function

$$E[kf[x]] = kE[f[x]]$$

$$E[f[X]] = \int f[x]Pr(X=x)dx$$

Rule 3:

Expectation of sum of functions is sum of expectation of functions

$$E[f[x] + g[x]] = E[f[x]] + E[g[x]]$$

$$E[f[X]] = \int f[x]Pr(X=x)dx$$

Rule 4:

Expectation of product of functions in variables \boldsymbol{x} and \boldsymbol{y} is product of expectations of functions if \boldsymbol{x} and \boldsymbol{y} are independent

$$E[f[x]g[y]] = E[f[x]]E[g[y]]$$
 if x, y independent

Conclusions

- Rules of probability are compact and simple
- Concepts of marginalization, joint and conditional probability, Bayes rule and expectation underpin all of the models in this book
- One remaining concept conditional expectation discussed later